

RPUG 2018 CONFERENCE - SOUTH DAKOTA 30 Years On The Road To Progressively Better Data

Rapid City September 18-21

High Resolution Multi-Lane Road Surface Mapping using 3D Laser Profilers

By John Laurent Pavemetrics Systems inc. www.pavemetrics.com

30 years on the Road To Progressively Better Data

The importance of road smoothness

- Very bumpy roads:
 - 30-40% increase of wear of road
 - Vertical acceleration increases dynamic load impact of traffic
 - Self destruction of bumpy road surfaces
- Driving comfort
- Fixed depth milling operations do NOT improve the longitudinal road profile

Road Rehabilitation

Road Rehabilitation

LDTM – Surveyor grade Terrain Mapping

Pavemetrics LDTM solution

1. LCMS system

- 2 Laser profilers (4 meters field of view)
- 2 Inertial Measurement Units (IMU)
- Distance Measuring Instrument
- (DMI)

- Optical encoder (DMI)
- Inertial Measurement Unit (IMU)
- GNSS

Asphalt Concrete Gravel

3D Road Profile Before Dynamic Corrections

3D Road Profile After Dynamic Corrections

cmsData\2013_07_31\Acqui0009\LcmsData_000000.fis - LcmsPV3D

Equipment Calibration

□ Survey

Processing

- Navigation solution
- Controls Points
- Stitch lanes

Data Exportation

LDTM Calibration

- 1 Scan of the calibration validation object
- 2 Stop and GO

3 – Measurement of the position of the sensors

Done only once during sensors installation

LDTM Calibration

Ground Control Points Survey

Ground Control Points

- Surveyed using a robotic total station
- One point every 300 meters on road surface or shoulder
- Converted in UTM

LDTM SURVEY

Imported in LCMS-PV3D software

Data Processing

Control and Alignment Points

LCMSPV3D ALIGNMENT POINTS CREATION

Green dot – Ground Control Point Orange dot – Alignment point

Conclusion: The entire surface is shifted down and right

Run 3

Tie Points Creation -Automatic mode

PV3D - Finds and select common features in overlapping areas

Run 2

Tie Points Creation

Shift Between Runs Before Processing Results (example)

Pavemetrics

.___

No more shift between runs after processing is applied

Pavemetrics

.___

Stitching Runs (before processing)

Stitching Runs (after processing)

Final surface

LAS file (10cm x 10cm)

Multiple runs - Average error compare to GT

■X ■Y ■Z

Accuracy compare to GT (Avg. in mm): X: 5.0 Y: 4.0 Z: 2.5 Repeatability compare to first scan (mm)*: X: 3.0 Y: 5.0 Z: 2.0

Runway 08-26, Montmagny, QC

Runway 08-26, Montmagny, QC

Survey Specifications

Total length of runway: 900 meters

Total width of runway: 30 meters

6 surveyed control points were used (3 on each end of the runway)

44 surveyed test points were distributed over the entire runway surface.

Total survey time 15 minutes

Total survey length 12km

Number of scans used to cover runway surface: 11* (total in both directions)

* A large number of scans were used to insure overlap between runs

Survey (11 runs with approx. 1m overlap between runs)

349 tie points were automatically generated and used to automatically stitch the 11 runs

Tie Points

6 surveyed control points (located on the ends of the runway) were used to align the Pavemetrics data to the traditional survey

Control Points (manual)

Green: Position of control point before alignment. Orange: Alignment point

Green: Position of control point after alignment

900 metres

30 m 🕻

Runway 08-26 - result

Runway 08-26 - result

Accuracy Analysis

The accuracy of the LDTM solution was evaluated using 44 survey targets which were painted on the runway

Due to the shape of the painted targets X, Y coordinates were difficult to match, however elevation data (Z) was excellent

What we wanted!

What we got!

Survey Target Locations Overlaid on Pavemetrics' Data

Surveyed test points used to evaluate the accuracy of the LDTM solution

Accuracy analysis

RTK Base GNSS used for the post-processing

• Base station was in La Pocatière, QC which is 62 km from the site

Survey time was only 15 minutes

Data preparation and processing time took 3 hours

The entire runway LDTM surface data was then compared to the 44 surveyed points to evaluate the overall errors

Accuracy versus survey results:

Average RMS Error [X; Y; Z]=[0.016; 0.011; 0.003]m

As expected X, Y accuracy was lower because of shape of painted survey markers.

Elevation accuracy was an amazing 3mm overall!

LAS file output (10cm x 10cm)

Questions?